Up-regulation of p21$^{\text{WAF1/CIP1}}$ by small activating RNA inhibits the *in vitro* and *in vivo* growth of pancreatic cancer cells

Zhiping Zhang1,2, Zhou Wang1, Xiangyan Liu1, Jie Wang2, Feng Li2, Changling Li2, and Baozhong Shan2

1Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan; 2Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, China

ABSTRACT

Aims and background. To study the inhibitory effect of p21$^{\text{WAF1/CIP1}}$ activation by saRNA on the growth of human pancreatic cancer cells PANC-1 *in vitro* and *in vivo*.

Methods and study design. A dsRNA (dsP21) targeting the p21$^{\text{WAF1/CIP1}}$ gene promoter at position-322 relative to the transcription start site was transfected into PANC-1 cells. Expression of mRNA and protein was evaluated by semiquantitative RT-PCR and Western blotting. Proliferation of PANC-1 cells was measured by the MTT method, and the apoptosis rate was detected by flow cytometry. PANC-1 cells were transplanted subcutaneously in nude mice, and the inhibitory effect of dsP21 on tumor growth was observed.

Results. The introduction of dsP21 was shown to efficiently up-regulate expression of the p21$^{\text{WAF1/CIP1}}$ gene in PANC-1 cells according to the results of RT-PCR and Western blotting ($P<0.01$, compared with controls). The inhibitory effect on cell proliferation was confirmed by the MTT test ($P<0.05$, compared with controls). The apoptosis rate of PANC-1 cells treated with dsP21 was significantly higher than that of the control cells ($P<0.01$). Our experimental data showed that dsP21-mediated up-regulation of p21 expression exerted an apparent growth inhibitory effect on PANC-1 cells *in vivo*.

Conclusions. dsP21 targeting the p21$^{\text{WAF1/CIP1}}$ gene promoter can specifically up-regulate expression of the p21$^{\text{WAF1/CIP1}}$ gene in PANC-1 cells. It therefore has a substantially inhibitory effect on cell proliferation *in vitro* and *in vivo* and can be used as a new method and material for the gene therapy of pancreatic cancer.

Key words: apoptosis, p21, pancreatic cancer, small activating RNA.