Prognostic relevance of $MLH1$ and $MSH2$ mutations in hereditary non-polyposis colorectal cancer patients

Antonio Russo1, Paola Sala2, Paola Alberici3, Isabella Gazzoli3, Paolo Radice3, Claudia Montefusco3, Margherita Torrini4, Cristina Maren5, Mara Fornasar5, Manuela Santarosa6, Alessandra Viel6, Piero Benatti7, Monica Pedroni7, Maurizio Ponz de Leon7, Emanuela Lucci-Cordisco8, Maurizio Genuardi9, Luca Messerini10, Vittoria Stigliano11, Alessandro Cama12, Maria Cristina Curia12, Laura de Lellis12, Stefano Signoroni2, Marco A Pierotti13, and Lucio Bertario2

1Department of Preventive-Predictive Medicine, and 3Department of Experimental Oncology and Molecular Medicine, IRCCS Istituto Nazionale Tumori Foundation, Milan; 2Department of Internal Medicine, University of Genoa, Genoa; 4Department of Internal Medicine, University of Modena and Reggio Emilia, Modena; 5Center for Cancer Study and Prevention (CSPO), Florence; 6Genetics Unit, Department of Clinical Pathophysiology, and 11Department of Department of Internal Medicine, University of Florence, Florence; 7Gastroenterology and Digestive Endoscopy Unit, Regina Elena Cancer Institute, Rome; 8Center for Cancer Study and Prevention (CSPO), Florence; 12Department of Oncology and Neurosciences, University “G. D’Annunzio”, Chieti. 10Department of Clinical Pathology, University of Florence, Florence; 9Genetics Unit, Department of Clinical Pathology, University of Florence, Florence; 10Department of Clinical Pathology, University of Florence, Florence. 11Gastroenterology and Digestive Endoscopy Unit, Regina Elena Cancer Institute, Rome; 12Department of Clinical Pathology, University of Florence, Florence; 13Scientific Directorate, IRCCS Istituto Nazionale Tumori Foundation, Milan, and Molecular Genetics of Cancer, FIRC Institute of Molecular Oncology Foundation, Milan, Italy.

ABSTRACT

Aims and background. Colorectal carcinoma patients from hereditary non-polyposis colorectal cancer families are suggested to have a better prognosis than sporadic colorectal carcinoma cases. Since the majority of hereditary non-polyposis colorectal cancer-related colorectal carcinomas are characterized by microsatellite instability due to germline mutations in DNA mismatch repair genes, this is consistent with the prolonged survival observed in sporadic microsatellite instability-positive colorectal carcinoma compared to microsatellite stable cases. However, a fraction of colorectal carcinoma cases belongs to families that, despite fulfilling the clinical criteria for hereditary non-polyposis colorectal cancer, do not carry mismatch repair gene mutations. Our aim was to verify to what extent the genotypic heterogeneity influences the prognosis of hereditary non-polyposis colorectal cancer patients.

Methods. A survival analysis was performed on 526 colorectal carcinoma cases from 204 Amsterdam Criteria-positive hereditary non-polyposis colorectal cancer families. Enrolled cases were classified as $MLH1$-positive, $MSH2$-positive and mutation-negative, according to the results of genetic testing in each family.

Results. Five-year survival rates were 0.73 (95% CI, 0.66-0.80), 0.75 (95% CI, 0.66-0.84) and 0.62 (95% CI, 0.55-0.68) for $MLH1$-positive, $MSH2$-positive and mutation-negative groups, respectively (logrank test, $P = 0.01$). Hazard ratio, computed using Cox regression analysis and adjusted for age, sex, tumor site and stage, was 0.71 (95% CI, 0.51-0.98) for the mutation-positive compared to the mutation-negative group. Moreover, in the latter group, patients with microsatellite instability-positive colorectal carcinomas showed a better outcome than microsatellite stable cases (5-year survival rates, 0.81 and 0.60, respectively; logrank test, $P = 0.006$).

Conclusions. Our results suggest that the prognosis of hereditary non-polyposis colorectal cancer-related colorectal carcinoma patients depends on the associated constitutional mismatch repair genotype.