Changes in glucose metabolism during and after radiotherapy in non-small cell lung cancer

Giampiero Giovacchini¹, Maria Picchio², Stefano Schipani³, Claudio Landoni^{1,2}, Luigi Gianolli², Valentino Bettinardi², Nadia Di Muzio³, Maria Carla Gilardi^{1,2,5}, Ferruccio Fazio¹, and Cristina Messa^{1,4,5}

¹University of Milano-Bicocca, Milan; Departments of ²Nuclear Medicine and ³Radiation Oncology, Scientific Institute San Raffaele, Milan; ⁴Department of Nuclear Medicine, San Gerardo Hospital, Monza; ⁵Institute for Bioimaging and Molecular Physiology, National Research Council, Milan, Italy

ABSTRACT

Aims and background. Evaluation of the metabolic response to radiotherapy in nonsmall cell lung cancer patients is commonly performed about three months after the end of radiotherapy. The aim of the present study was to assess with positron emission tomography/computed tomography (PET/CT) and [¹⁸F]fluorodeoxyglucose changes in glucose metabolism during and after radiotherapy in non-small cell lung cancer patients.

Methods and study design. In 6 patients, PET/CT scans with [¹⁸F]fluorodeoxyglucose were performed before (PET₀), during (PET₁; at a median of 14 days before the end of radiotherapy) and after the end of radiotherapy (PET₂ and PET₃, at a median of 28 and 93 days, respectively). The metabolic response was scored according to visual and semiquantitative criteria.

Results. Standardize maximum uptake at PET₁ (7.9 ± 4.8), PET₂ (5.1 ± 4.1) and PET₃ (2.7 ± 3.1) were all significantly (P < 0.05; ANOVA repeated measures) lower than at PET₀ (16.1 ± 10.1). Standardized maximum uptake at PET₁ was significantly higher than at both PET₂ and PET₃. There were no significant differences in SUV_{max} between PET₂ and PET₃. PET₃ identified 4 complete and 2 partial metabolic responses, whereas PET₁ identified 6 partial metabolic responses. Radiotherapy-induced increased [¹⁸F]fluorodeoxyglucose uptake could be visually distinguished from tumor uptake based on PET/CT integration and was less frequent at PET₁ (n = 2) than at PET₃ (n = 6).

Conclusions. In non-small cell lung cancer, radiotherapy induces a progressive decrease in glucose metabolism that is greater 3 months after the end of treatment but can be detected during the treatment itself. Glucose avid, radiotherapy-induced inflammation is more evident after the end of radiotherapy than during radiotherapy and does not preclude the interpretation of [¹⁸F]fluorodeoxyglucose images, particularly when using PET/CT.

Key words: lung cancer, positronemission tomography, radiotherapy.

Acknowledgments: We would like to acknowledge the Italian Association of Cancer Research for partially supporting this study (grant number 1758).

Correspondence to: Cristina Messa, San Gerardo Hospital, Department of Nuclear Medicine, Via Pergolesi 33, 20052 Monza, Italy. Tel +39-039-233-9130; fax +39-039-233-4128; e-mail c.messa@hsgerardo.org

Received August 25, 2008; accepted November 21, 2008.