Changes in glucose metabolism during and after radiotherapy in non-small cell lung cancer

Giampiero Giovacchini1, Maria Picchio2, Stefano Schipani3, Claudio Landoni1,2, Luigi Gianolli2, Valentino Bettinardi2, Nadia Di Muzio3, Maria Carla Gilardi1,2,5, Ferruccio Fazio1, and Cristina Messa1,4,5

1University of Milano-Bicocca, Milan; Departments of 2Nuclear Medicine and 3Radiation Oncology, Scientific Institute San Raffaele, Milan; 4Department of Nuclear Medicine, San Gerardo Hospital, Monza; 5Institute for Bioimaging and Molecular Physiology, National Research Council, Milan, Italy

ABSTRACT

Aims and background. Evaluation of the metabolic response to radiotherapy in non-small cell lung cancer patients is commonly performed about three months after the end of radiotherapy. The aim of the present study was to assess with positron emission tomography/computed tomography (PET/CT) and [18F]fluorodeoxyglucose changes in glucose metabolism during and after radiotherapy in non-small cell lung cancer patients.

Methods and study design. In 6 patients, PET/CT scans with [18F]fluorodeoxyglucose were performed before (PET0), during (PET1; at a median of 14 days before the end of radiotherapy) and after the end of radiotherapy (PET2 and PET3, at a median of 28 and 93 days, respectively). The metabolic response was scored according to visual and semiquantitative criteria.

Results. Standardize maximum uptake at PET1 (7.9 ± 4.8), PET2 (5.1 ± 4.1) and PET3 (2.7 ± 3.1) were all significantly (P <0.05; ANOVA repeated measures) lower than at PET0 (16.1 ± 10.1). Standardized maximum uptake at PET1 was significantly higher than at both PET2 and PET3. There were no significant differences in SUVmax between PET2 and PET3. PET3 identified 4 complete and 2 partial metabolic responses. Radiotherapy-induced increased [18F]fluorodeoxyglucose uptake could be visually distinguished from tumor uptake based on PET/CT integration and was less frequent at PET1 (n = 2) than at PET3 (n = 6).

Conclusions. In non-small cell lung cancer, radiotherapy induces a progressive decrease in glucose metabolism that is greater 3 months after the end of treatment but can be detected during the treatment itself. Glucose avid, radiotherapy-induced inflammation is more evident after the end of radiotherapy than during radiotherapy and does not preclude the interpretation of [18F]fluorodeoxyglucose images, particularly when using PET/CT.

Key words: lung cancer, positron-emission tomography, radiotherapy.

Acknowledgments: We would like to acknowledge the Italian Association of Cancer Research for partially supporting this study (grant number 1758).

Correspondence to: Cristina Messa, San Gerardo Hospital, Department of Nuclear Medicine, Via Pergolesi 33, 20052 Monza, Italy
Tel +39-039-233-9130; fax +39-039-233-4128; e-mail c.messa@hsgerardo.org

Received August 25, 2008; accepted November 21, 2008.