Diagnosi, profilassi e terapia del tromboembolismo venoso (TEV) in oncologia

Marco Moia

Centro Emofilia e Trombosi A. Bianchi Bonomi Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena di Milano

Milano, 27 Novembre 2008

Diagnosis

Need for diagnosis of VTE

- Treatment is with anticoagulants
- Adverse effect bleeding complications
- Clinical picture is non-specific
- Incorrect treatment is to be avoided
- Thus correct diagnosis / refuting of VTE is necessary

Compression ultrasound (normal)

Compression ultrasound (not compressible)

Suspicion of Pulmonary Embolism

• Wide clinical spectrum

- Most symptoms shared with other diseases
- No single 'pathognonomic' symptom
- Also 'first line tests'
 - Oxygenation of blood
 - ECG-Right Ventricular strain
 - Chest X-ray

are not 'sensitive' or specific'

Signs and symptoms of PE

- Thoracic pain associated with breathing
- Shortness of breath (on exertion)
- Coughing
- Speckles of blood in sputum
- (Sub-) febrile temperature

A Practical Approach to PE

- Always consider the diagnosis, especially:
 - Discrepancy Chest X-ray clinical presentation
 - Chest X-ray ECG provide no alternative diagnosis
 - Presence of known risk-factors
 And finally:
 - Treated for other diagnosis, but no improvement

Spiral C(omputed) T(omography)

How to be performed?

- injection of contrast medium
- 30 sec breathhold
- 5 (or 3) mm slices caudocranial
- contrast timing

Six view V/Q lung scan

How to be performed?

Inhalation of xenon, krypton or radiolabeled aerosol formulations

Mixing of radio-labeled material with alveolar gas

Wash-in, equilibrium, wash-out phase Serial images in time

Injection of radio-labeled albumin particles

Particles entrapped in pulmonary circulation

V/Q scan

6 view scans:

anterior posterior right/left oblique right/left lateral

Take Home Messages

- Pulmonary Embolism should always be on the shortlist, when seeing a patient with pulmonary symptoms
- Multiple diagnostic strategies can be used depending on local expertise/availability
- D-dimer can be useful (to rule out VTE) in case of low clinical probability

Prophylaxis

Prophylaxis of VTE in patients with cancer: surgery

ACCP Guidelines, Chest 2008; 133

- We recommend prophylaxis appropriate for the type of surgery Grade 1A
- For selected high-risk surgery patients, including some of those who have undergone major cancer surgery, we suggest that continuing thromboprophylaxis after hospital discharge with LMWH for up to 28 days be considered Grade 2A

A Clinical Outcome-Based Prospective Study on Venous Thromboembolism After Cancer Surgery The @RISTOS Project

Giancarlo Agnelli, MD,* Giorgio Bolis, MD,† Lorenzo Capussotti, MD,‡ Roberto Mario Scarpa, MD,§ Francesco Tonelli, MD,|| Erminio Bonizzoni, PhD,¶ Marco Moia, MD,‡‡ Fabio Parazzini, MD,† Romina Rossi, MD,* Francesco Sonaglia, MD,* Bettina Valarani, PhD,** Carlo Bianchini, MD,†† and Gualberto Gussoni, MD, PhD††

Ann Surg 2006;243: 89–95

Prophylaxis regimens

In-hospital prophylaxis

LMWH60.7%UFH15.3%Physical methods8.5%

Post-discharge prophylaxis30.7%LMWH23.7%UFH1.2%Physical methods1.7%ASA3.3%Oral anticoagulants1.2%

81.7%

30-day / in-hospital mortality

Overall mortality: 1.72

VTE-related: 46.3%

VTE timing

Event timing: 40% > 21 days after surgery

VTE and risk factors Multivariate logistic regression analysis

Variable	Effect	OR	95%CI
Age	\geq 60 vs < 60 years	2.6	1.2 - 5.7
Previous VTE	Yes vs No	6.0	2.1 - 16.8
Anesthesia	\geq 2 vs < 2 hours	4.5	1.1 - 19.1
Staging	Adv. vs non-advanced	2.7	1.4 - 5.2
Bed resting	\geq 4 vs < 4 days	4.4	2.4 - 7.8

Thromboprophylaxis in major abdominal surgery for cancer Negus JJ et al, Eur J Surg Oncol, 2006

- Systematic review of the literature
- Patients with cancer are at substantially higher risk for VTE than patients without cancer
- Prolonged thromboprophylaxis (up to 4 weeks) is more effective than short-term
- Graduated compression stockings have a synergistic effect on the reduction in VTE risk

Prophylaxis of VTE in cancer patients

ACCP Guidelines, Chest 2008; 133

- Cancer patients who are bedridden with an acute medical illness: we recommend routine thromboprophylaxis with LMWH, LDUH, or fondaparinux Grade 1A
- If there is a contraindication to anticoagulant thromboprophylaxis, we recommend the optimal use of mechanical thromboprophylaxis with GCS or IPC Grade 1A

Prophylaxis of VTE in cancer patients with CVC

ACCP Guidelines, Chest 2008; 133

 We recommend that clinicians <u>not</u> use either prophylactic doses of LMWH, or minidose warfarin Grade 1B

Treatment

Tretament of VTE Common goals for DVT and PE

- To reduce thrombus formation and/or to favour thrombolysis
- To prevent (further) embolization
- To reduce the risk of death
 - At low risk of bleeding
 - Without admission
- To reduce the risk of recurrence

Treatment of VTE Specific goals for DVT and PE

- DVT: to reduce the risk of the post-thrombotic syndrome (elastic stockings, exercise, ...)
- PE: to reduce the risk of pulmonary hypertension (recurrence of PE)

Treatment of VTE

- LMWH (from 115 to 200 U/kg/d, depending on the molecule) for <u>at least 5</u> days; alternatives are UH or fondaparinux
- VKA (warfarin or acenocoumarol) from the first day, for <u>at least 3-6</u> months
- LMWH should not be stopped earlier than 48 hours from INR at target (INR 2.5, range 2.0-3.0)

When VKA should be delayed or avoided

- Contraindications to VKA
- Low compliance (check !)
- Active bleeding
- Invasive procedure
- Overt cancer

Treatment of VTE in patients with cancer

ACCP Guidelines, Chest 2008; 133

- We recommend LMWH for the first 3 to 6 months of long-term anticoagulant therapy Grade 1A and subsequent anticoagulant therapy with VKA or LMWH indefinitely or until the cancer is resolved Grade 1C
- In patients who receive long-term anticoagulant treatment, the risk-benefit ratio of continuing such treatment should be reassessed in the individual patient at periodic intervals Grade 1C

VTE treatment in cancer patients

Lee AYY et al, N Engl J Med 2003;349:146-53

LMWH vs VKA for Long-Term Treatment of VTE in Patients With Active Cancer

Author/yr (Acronym)	Interventions	Patients Analyzed, No./Total (%)	Length of Follow-up	Recurrent DVT or PE, No./Total (%)	Major Bleeding, No./Total (%)	Total Mortality, No/Total (%)	Comments
Meyer et al ²¹³ /2002	VKA (INR, 2.0–3.0) for 3 mo after initial enoxaparin	75/75	3 mo	3/75 (4%)	12/75 (16%)	17/75 (23%)	Population: DVT (proportion with calf DVT no known) or PE and active cancer; all fatal bleedings (n = 6) were
	Enoxaparin at 1.5 mg/kg once daily for 3 mo	71/71	3 mo.	2/71 (3%) RR, 0.7 (95% CI, 0.1-4.1)	5/71 (7%) RR, 0.4 (95% CI, 0.2–1.2)	8/71 (11%) RR, 0.5 (95% CI, 0.2–1.1)	in VKA group.
Lee et al ²¹¹ /2003 (CLOT)	VKA (INR, 2.0–3.0) for 6 mo after initial dalteparin	336/338	6 mo	53/336 (16%)	12/335 (4%)	136/336 (40%)	Population: Proximal DVT or PE and active cancer
	Dalteparin at 200 U/kg once daily for 1 mo followed by 150 U/kg for 5 mo	336/338	6 mo	27/336 (8%) RR, 0.5 (95% CI, 0.3–0.8)	19/338 (6%) RR, 1.6 (95% CI, 0.8–3.2)	130/336 (37%) RR, 1.0 (95% CI, 0.8–1.2)	Difference in efficacy mainly due to recurrent DVT (14 vs 37 episodes)
Hull et al ²²¹ /2006 (Main LITE- cancer)	VKA (INR 2.0–3.0) for 3 mo after initial IV UFH	100/100	3 mo	10/100 (10%)	7/100 (7%)	19/100 (19%)	Population: Proximal DVT and active cancer
	Tinzaparin at 175 mg/kg once for 3 mo	100/100	3 mo.	6/100 (6%) RR, 0.6 (95% CI, 0.2–1.6)	7/100 (7%) RR, 1.0 (95% CI, 0.4–2.8)	20/100 (20%) RR, 1.0 (95% CI, 0.6–1.9)	Prespecified, stratification, subgroup within a larger trial; Outcomes at 12 mo were also reported
Summary				RR, 0.7 (95% CI, 0.4–0.8)	RR, 1.0 (95% CI, 0.6–1.6)	RR, 0.9 (95% CI, 0.8–1.1)	

Treatment of DVT: useful

- Elevated legs
- Elastic stockings
- Ultrasound before stopping treatment
- Search for causes (cancer, thrombophilic state)

Treatment of DVT: useless

- Bedrest
- Antibiotics
- NSAID
- To frighten the patient

Vena Cava Filters ACCP Guidelines, Chest 2008; 133

- For most patients with DVT, we recommend against the routine use of a vena cava filter in addition to anticoagulants Grade 1A
- We recommend placement of an inferior vena caval filter in patients with a contraindication for, or a complication of anticoagulant treatment Grade 1C

Take home messages

- In patients with high suspicion of VTE start treatment (LMWH) while waiting for diagnostic confirmation/exclusion
- In patients with PE, evaluate the risk/benefit ratio of a more aggressive approach:
 - In patients hemodinamically unstable: prefer thrombolysis
 - In all the other patients, prefer anticoagulant treatment