COMPLICANZE EMORRAGICHE E TROMBOTICHE IN ONCOLOGIA: DIAGNOSI E TERAPIA

Milano, 26-26 novembre 2008 Fondazione IRCCS Istituto Tumori

Le piastrinopenie in oncologia: cause, diagnosi e terapia

Marco Ruggeri, UO Ematologia -Vicenza-

Thrombocytopenia and cancer: multiple origins

1. Reduced platelet production

- Primary bone marrow disease (leukemia,myeloma, advanced lymphoma)
- Solid tumors with bone marrow metastases
- Paraneoplastic syndromes (rare)

AML

Multiple Myeloma

B-NHL Large Cell

Neuroblastoma metastases

AdenoCR Prostate metastases

AdenoCR Prostate metastases

Paraneoplastic syndromes: Severe Amegakaryocytic thrombocytopenia and lung cancer¹

71 year woman, with fever, fatigue, cough; WBC 11 x $10^{9}/L$, Hb 11 g/dL, PLT 6 x $10^{9}/L$

¹Witteles WH et al. *JCO*, 2008

Thrombocytopenia and cancer: multiple origins

2. Accelerated platelet distruction

- Tumor-induced D.I.C. (APL, mucinous adenocarcinoma, pancreatic carcinoma)
- Tumor-induced TTP
- Immune mechanism (lymphoproliferative diseases)

APL

Female, 45 years old Hemorrhagic diathesis Hb 8 g/dL WBC 0.9×10^{9} /L PLT 23 x 109/L PT 2.3 (INR) aPTT 1.8 (Ratio) Fibrinogen 65 mg/dL D-Dimer test > 500 ng/mL

B-CLL and MKB hyperplasia

Immune Thrombocytopenia (IT) in B-CLL Retrospective analysis in 1.278 patients

- 64 (5%) developed IT *during a median follow-up of 60 months from B-CLL diagnosis (14,2%, concomitantly)
- Probability of IT response higher for CTH ± steroids than i.v.lg ± steroids (p=0.01)
- IT+ had poorer survival than IT- patients (p<0.001) independently from other prognostic variables
- *= rapid and severe fall in platelet count; normal/augmented MKC in BM; no splenomegaly; no recent CHT (1 month)

Thrombocytopenia and cancer: multiple origins

3. Platelet sequestration

Tumor-associated hypersplenism

Hemangioendothelioma

Hemangioendothelioma

Thrombocytopenia and cancer: multiple origins

4. Reduced platelet production treatment-induced

Chemotherapy

Radiation treatment

Bone marrow after CHT

WHO Bleeding scale

- Grade 0 no bleeding
- **Grade 1** petechial bleeding, no medical intervention
- Grade 2 mild blood loss clinically significant, medical intervention, no transfusion
- Grade 3 gross blood loss, medical intervention, requires transfusion
- Grade 4 debilitating, life-threatening blood loss, retinal or cerebral associated with fatality

Rate of hemorrhagic deaths in AL patients not treated with PLT transfusion

Hersh et al; Causes of death in acute leukemia. A ten year study of 414 patients. *JAMA* 1965

Rate of bleeding in thrombocytopenic patients with AL (1)

Manual platelet counts ! ASA freely used as antipyretic drug and for pain !

Bleeding occurred on:

-38% of daysat PLT 10-20 x 109/L-50% of daysat PLT 5-10 x 109/L-65%-92% of daysat PLT < 5 x 109/L</td>

Rate of bleeding in thrombocytopenic patients with AL (2a)

Patients investigated: 102 AL (AML, ALL and 7 APL) and TCP post CTH, mean age 42 years

Design: prospective study on prophylactic platelet transfusion

End point: frequency and severity of hemorrhages

Period of observation: from 1983 to 1990

Rate of bleeding in thrombocytopenic patients (2b)

Major bleeding (WHO 2-4)

31 episodes in 23 patients (20%); 3 hemorrhagic deaths

PLT count from 1 to 65×10^9 /L

Gmur et al. Lancet 1991

Rate of bleeding in thrombocytopenic patients with AL (3) Data from GIMEMA RCT (Rebulla et al, NEJM, 1997)

Patients investigated: 225 with AML (no APL) and TCP post CTH, age 16-74 years, male 52%

Design: 135 (52,9%) randomized to PLT transfusion at PLT count < 20 x 10⁹/L (standard practice) compared with 120 (47,1%) at PLT count < 10 x 10⁹/L (experimental arm)

End point: frequency and severity of hemorrhages

Period of observation: 7335 patient-days

Webert et al. Haematologica, 2006

Cumulative incidence for the occurrence of al least one bleeding of WHO grades 1-2, 2-4, 3-4 and 4

tients with bleeding	n, %
ade ≥ 1	149, 58%
ade≥ 2	52, 20.4%
rde≥ 3	28, 11%
ade 4	5, 2%

Webert et al. Haematologica, 2006

Rate of thrombocytopenia with need of PLT transfusion in solid cancer patients

Retrospective analysis in 1.051 cancer patients (93, 9% with LNH) Characteristics of cohort: -age > 60 years: 396 (38%) -high* risk CHT:105 (10%) -n CHT course = 1: 766 (78%) Results -56 (5.3%) received PLT transfusion for severe TCP

*= doxorubicin > 90 mg^{m2}; epirubicin > 90 mg^{m2}, cisplatin > 100 g^{m2}; ifosfamide > 9 g^{m2}; cyclophosphamide > 1 g^{m2}; etoposide > 500 mg^{m2}; cytarabine > 1 g^{m2}

Blay JY et al. *Blood,* 1998

<u>Risk factors</u> for bleeding in AL: blood platelet count (x10⁹/L) per 1000 days at risk in AL patients

Gumr et al. Lancet, 1991

Risk factors for bleeding in AL

Mild bleeding (WHO 1-2)

Variable	OR	CI	р
Antifungal medication	0.59	0.39-0.90	0.014
Clinical infection	1.98	1.00-3.92	0.05
Body temperature	1.52	1.25-1.85	< 0.05
PLT transfusion	0.45	0.28-0.72	< 0.05
PLT count	0.97	0.96-0.98	<0.05
Seve	ere bleedir	ng (WHO 3-4)	
PLT count	0.96	0.93-0.99	<0.05
Previous hemorrhage	2.55	1.18-5.49	0.0017

Webert et al. Haematologica, 2006

Factors associated with thrombocytopenia requiring PLT transfusion in cancer patients

Condition before CHT (multivariate analysis):

	OR	CI	р
PLT < 150 x 10 ⁹ /L	2.23	1.22-4.11	<0.001
Lymphocyte < 700/µL	3.37	1.77-6.44	<0.001
H.R. CTH	3.38	1.77-6.46	<0.001

Blay JY et al. Blood, 1998

Factors associated with risk of bleeding in cancer patients (1)

Retrospective analysis at John's Hopkins Oncology Center of 2.942 patients with cancer and thrombocytopenia (any etiology)

Condition	OR	CI	р
Uremia	1.64	1.33-1.79	<0.05
Hypoalbuminemia	1.32	1.22-1.43	<0.05
Previous hemorrhage	6.72	5.53-8.18	<0.05

* No correlation with PLT count

Friedman et al. Transfusion Med Rev, 2002

Factors associated with risk of bleeding in cancer patients (2)

Retrospective analysis at MD Anderson Cancer Center Center of 1.262 CHT and thrombocytopenia in 609 cancer patients

Major bleeding in 43 CHT (3%); total bleeding in 111 CHT (9%)

Condition	OR	CI	р
PLT < 75 x10 ⁹ /L	3.1	1.91-5.10	<0.001
Bone marrow meta	2.2	1.40-3.50	<0.01
Previous hemorrhage	5.4	2.90-10.2	<0.001
Cispaltin/carmustine	2.2	1.50-3.4	<0.002

Elting et al. J Clin Oncol, 2001

PLT transfusions were shown to reduce mortality from hemorrhage in AL patients *

It is now an essential part of treatment of cancer and hematological malignancies

> 1.5 million components of platelets transfused each year in USA 1 and > 2.9 in Europe 2

¹Sullivan MT et al. *Transfusion* 2005; ² Maniatis A et al. *Blood transfusion in Europe, Elsevier*, 2005

Problems from increased use of PLT transfusion

- Increasing demand for PLT concentrate (recruitment of additional donors may not be sustainable)
- Transfusion-risk associated
- Platelet transfusion refractoriness

Info	ctious	CAUSE	PREVENTION
•	AIDS	HIV-infected donor	Donor screening and testing Pathogen inactivation
	Hepatitis	Hepatitis B or hepatitis C virus infected donor	Donor screening and testing Pathogen inactivation
	CMV disease	CMV-infected donor	Donor testing Leucocyte reduction Pathogen inactivation
	Sepsis or septic shock	Contamination from the platelet donor's skin or from an occult or asymptomatic donor bacteraemia	Culture product 24 or more hours after collection Test for bacteria shortly before transfusion Pathogen inactivation
Imm	nunological		
	Alloimmunisation	Leucocytes in platelets	Leucocyte reduction UVB irradiation
	Febrile reactions	HLA antibodies in transfusion recipient and IL-1β and IL-6 in platelets	Leucocyte reduction
	TRALI	Leucocyte antibodies, bioactive lipids, or CD40L in platelets	Exclude donors with leucocyte antibodies
	Anaphylaxis	Antibodies in patients reacting with IgA, haptoglobin, antibodies, or other plasma antigens	IgA-defi cient platelet donors Washed platelets
	GVHD	Engraftment of donor leucocytes in an immunosuppressed recipient	Gamma irradiation of platelets (25 Gy) Possibly pathogen inactivaton
	RhD alloimmunisation	Transfusion of platelets from RhD-positive donors to RhD-negative recipients	Administer Rh immune globulin within 48 h of transfusion
	Haemolysis	Anti-A and anti-B in donor's plasma	Exclude donors with high titres of anti-A or anti-B
	Hypotension	Generation of bradykinin by the bedside fi Itration of platelets in a patient taking angiotensinconverting enzyme (ACE) inhibitors	Pre-storage or in laboratory leucocyte reduction

Stroncek DF and Rebulla P. Lancet, 2007

Platelet transfusion: the "threshold" concept

- Gaydos et al. The quantitative relation between platelet count and hemorrhage in patients with acute leukemia. *NEJM* 1962
- Freireich FJ. Effectiveness of platelet transfusion in leukemia and aplastic anemia. *Transfusion* 1966
- Higby DJ et al. The prophylactic treatment of thrombocytopenic leukemic patients with platelet: a double blind study. *Transfusion* 1974
- Murphy S et al. Randomized trial of prophylactic vs. therapeutic platelet transfusion in childhood acute leukemia. *Clin Res* 1974

Platelet transfusion: the 20x10⁹/L trigger NIH consensus conference (*JAMA* 1987):

"it is common practice to use preselected level of thrombocytopenia to decide when to transfuse platelets prophylactically. The value of 20 x 10⁹/L is often used"

Gaydos et al. NEJM, 1962

"aspirinized" patients: no threshold value is seen Slichter SJ et al. Clin Hematol, 1978

no "aspirinized patients: threshold value at 5 x 10⁹/L

Beutler E. Blood, 1993

Searching a lower threshold

- Gmur J et al. Lancet 1991
- Gil-Fernandez JJ et al. *Bone Marrow Transplant* 1996
- Heckman KD et al. J Clin Oncol 1997
- Rebulla P et al. NEJM 1997
- Wandt H et al. *Blood* 1998
- Lawrence JB et al. Leuk Lymphoma 2001
- Zumberg et al. Biol Blood Marrow Transplant 2002

Rebulla et al. *NEJM*, 1997

TABLE 4. MAJOR END POINTS OF THE TRIAL.

END POINT	Threshold, 10,000 Platelets/mm ³ (N = 135)	Threshold, 20,000 Platelets/mm ³ (N = 120)
Patients with major bleeding episodes — no. (%)	29 (21.5)	$24\ (20.0)$
1 episode	21(15.6)	18(15.0)
2 episodes	7 (5.2)	3 (2.5)
3 episodes	0	3 (2.5)
4 episodes	1(0.7)	0
>4 episodes	0	0
Total days in hospital	4006	3330
Days with major bleeding episodes — no. (%)	123 (3.1)	65 (2.0)
Complete remission - no. of patients (%)) 76 (56.3)	76 (63.3)
Death — no. of patients (%)	18 (13.3)	9 (7.5)
Infection	12	7)
Cardiac failure	2	0
Acute renal failure	0	1
Trauma	1	0
Disseminated intravascular coagulation	1	0
Apoplectic stroke	0	1
Intestinal infarction	1	0
Cerebral hemorrhage	1	0

Heckman et al. J Clin Oncol, 1997

<10.000/mcL </pre>

Bleeding episodes per patient

Platelet transfusion for patients with cancer: clinical practice guidelines "Threshold Guidelines"

- Consensus Conference on PLT transfusion, Br J Haematol, 1998
- ASCO guidelines, J Clin Oncol, 2001
- BCSH guidelines, Br J Haematol, 2003

PLATELET TRANSFUSION GUIDELINES

Condition	Guidelines	Level evidence	Grade
Acute leukemia	 ≤ 10x10⁹/L ≤ 20x10⁹/L, if: -fever -hemorrhage - hyper-WBC - coagulopathy 		A
Hematopoietic cell transplantation	Similar to AL		В
Chronic, stable TCP (e.g.MDS, aplastic anemia)	No prophylactic PLT transfusion	IV	С
Solid tumor	 ≤ 10x10⁹/L ≤ 20x10⁹/L, if: Bladder tumor Necrotic tumors 	IV	B

ASCO guidelines, J Clin Oncol, 2001

PLATELET TRANSFUSION GUIDELINES

Condition	Guidelines	Level evidence	Grade
Surgical/invasive procedure	40-50 x10 ⁹ /L in absence of coagulopathy	IV	С
Bone marrow aspiration/biopsy	Less than 20 x 10 ⁹ /L		
Lumbar puncture	Transfusion of <20 x 10 ⁹ /L		
Liver biopsy	< 20 x 10 ⁹ /L rate of bleeding similar to >150 x 10 ⁹ /L (3.4%)		
GI endoscopy	< 20 x 10 ⁹ /L no major complication (no biopsy)		
Broncoscopy + BAL	12% minor complication in < 50 x 10 ⁹ /L		
Transbronchial biopsy	Transfusion of <20 x 10 ⁹ /L		

ASCO guidelines, J Clin Oncol, 2001

Limitations of Guidelines

- Lack of blinding of clinicians in RCT: Detection bias and Performance bias
- Reduction of platelet use not achieved in all group in patients in RCT
- Low adherence to platelet trigger in clinical practice (protocol deviation in 38% and 15% of PLT transfusion in the 2 arms of Rebulla study)

in Netherlands only 50% of transfusion were strictly compliant with the stated threshold (Eikenboom et al. *Transfusion Medicine*, 2005)

MDS and thrombocytopenia

- Heterogeneous hematopoietic disease associated with bone marrow failure (peripheral cytopenias) and a propensity for progression to AML¹
- Two classification systems (FAB² and WHO³)
- Several prognostic-scoring systems (IPSS⁴ and WPSS⁵)
- Standardized response criteria⁶

¹Nimer SD. *Blood*, 2008; ² Bennet JM et al. *Br J Haematol*, 1982; ³Vardiman JW et al. *Blood*, 2002; ⁴Greenberg P et al. *Blood*, 1997; ⁵Malcovati L et al. *J Clin Oncol*, 2007; ⁶Cheson BD et al. *Blood*, 2000; 2006

The incidence and impact of thrombocytopenia in MDS

M.D. Anderson Cancer Centre cohort¹

2.410 MDS (1903 primary)

1.605 (67%) with thrombocytopenia (< 100 x 10⁹/L) at referral
451 (17%) with severe thrombocytopenia (< 20 x 10⁹/L) at referral
460/968 died without AML progression AND with a coded cause: 90 (20%) hemorrhage contributory cause and 48 (20%) the only cause

Bleeding reported in 50% at diagnosis in patients with PLT < 50 x $10^{9}/L^{2}$ and from 3% to 18% during follow-up (moderate to severe hemorrhage³⁻⁵)

¹Kantarjian H et al. *Cancer,* 2007; ² Wattel E et al. *Br J Haematol,* 1994; ³Powel BL et al. *Leukemia,* 1988; ⁴Rosenfeld CS et al. *Am J Clin Oncol,* 1997; ⁵Picozzi VJ et al. *J Clin Oncol,* 1986

Prognostic scoring systems underweight the clinical importance of severe thrombocytopenia

	0	0.5	1.0	1.5	2.0
Blast %	< 5	5-10	-	11-20	21-30
Karyotype	Good	Intermediate	Poor		
Cytopenias	0/1	2/3	-	-	-

IPSS

	0	1	2	3
WHO cat.	RA;RARS;5q-	RCMD; RCMD-RS	RAEB-1	RAEB-2
Karyotype	Good	Intermediate	Poor	-
Transfusion*	No	Regular	-	-
WPSS *= RBC transfusion dependency				

IWG response criteria for hematologic improvement

Erythroid response

Platelet response (PLT pre-treatment< 100 x 10⁹/L):

- Absolute increase of > 30 x 10⁹/L (starting > 20 x 10⁹/L)
- Increase from < 20×10^9 /L to > 20×10^9 /L

Neutrophil response

Cheson BD et al. Blood, 2000; 2006

Hematologic Improvement for PLT

Treatment	N patients	HI PLT% major/minor*
Lenalidomide	43	10/0
EPOr	40	0/0
Antithymocyte Ig	68	40/27
Cyclosporine A	50	16/12
Thalidomide	29	14/17
Arsenic trioxide	101	6/0
Valproic acid	18	11/0

*Cheson BD et al. Blood, 2000

Hypomethylating agents in MDS

Azacitidine and Decitabine have demonstrate anti-MDS activity¹

FDA-approved for all type of MDS (FAB)^{2,3}:

- 1. Significant reduction in risk of transformation to AML
- 2. Significant prolongation of survival in patients with high-risk MDS

¹Santini V et al. *Ann Intern Med*, 2001; ²Silverman LR et al. *J Clin Oncol*, 2002; ³Kantarjian H et al. *Cancer*, 2006

Best response for MDS patients treated with azacitidine

	Pro. 8421 Pro. 8921			Pro.9221					8921+9221			
	AZA IV 48 pts		AZA SC 70 pts		AZA SC 99 pts		Observation 41 pts		AZA SC 51 pts		AZA SC 169 pts	
	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%	Ν	%
CR	7	15	12	17	10	10	0	0	3	8	22	13
PR	1	2	0	0	1	1	0	0	2	4	1	1
HIEM	10	21	11	16	22	22	1	2	8	16	33	40
HIEm	2	4	3	4	8	8	4	10	4	8	11	17
HIPM	9	16	6	9	21	21	2	5	3	6	27	16
HIPm	0	0	2	3	3	3	0	0	1	2	5	3
HINM	2	4	0	0	8	8	1	2	2	4	8	5
HIMm	0	0	0	0	0	0	0	0	0	0	0	0
Overall	21	44	28	40	47	47	7	17	18	35	75	44

Response and outcome of MDS patients treated with decitabine

Results of RCT of 3 schedules of low dose decitabine¹ 95 patients with MDS high risk

33/68 (49%) patients with PLT pre-treatment < 100 x 10⁹/L achieved a PLT response (> 100 x 10⁹/L)

- 4/15 (27%) with PLT pre-treatment < 20 x $10^{9}/L$
- 14/31 (45%) with PLT pre-treatment < 50 x 10⁹/L
- 15/22 (68%) with PLT pre-treatment < 99 x 10⁹/L

One-year survival by platelet count:

86% for responders vs 54 non-responders (p= 0.03)

Thrombopoietic growth factors

-1994: purification and cloning human TPO

FIRST GENERATION

- Recombinant human thrombopoietins (rhTPO)
- PEG-rHuMGDF
- Recombinant TPO fusion proteins
- Promegapoietin (TPO/IL3 fusion protein)

-rhTPO and PEG-rhMGDF studied in several thrombocytopenic disorders

-1998: clinical trials stopped for auto Ab against PEG-rhMGDF and endogenous TPO in some patients \rightarrow no development of rhTPO

Thrombopoietic Growth Factors

Second generation: same effects on rTPO, without antigenicity property (no homology sequence with TPO) <u>TPO peptide mimetics</u>

Fab 59 AMG 531 (s.c. administration) Peg TPOmp **TPO non-peptide mimetics** Eltrombopag (orally available) AKR-501 (orally available) **TPO** agonist antibodies Minibodies (VB22B sc(FV)2) MA01G4G344

Thrombopoietic agents currently in clinical development

Agents Peptides

Romiplostim

Fab59 PEG-TPOmp

Non-peptide small molecules Eltrombopag

AKR-501

LGD-4665 Butyzamide

Monoclonal antibodies

- VB22B sc (Fv)2
- MA01G4G344

Clinical development

Currently approved for ITP. Current clinical trials for myelodysplasia and chemotherapy induced thrombocytopenia No human studies reported No human studies reported

Currently approved for ITP. Current clinical trials for chemotherapyinduced thrombocytopenia and HCV – induced TCP

Current clinical trials for ITP, liver disease and chemotherapy-induced thrombocytopenia Studies in normal subjects reported No human studies reported

No human studies reported No human studies reported

George JN et al. Haematologica, 2008

AMG531: Recombinant Protein

"Peptibody"

- consists of a carrier Fc domain linked to multiple Mpl-binding domains¹
- MW = 60,000
- No sequence homology with TPO

 Binds to and activates receptor Mpl (TPOr); stimulates megakaryocyte growth, maturation^{1, 2}

¹Broudy VC and Lin NL. *Cytokine*, 2004; ²Wang B et al. *Clin Pharmacol Ther*, 2004

Eltrombopag: Platelet Growth Factor

- Oral TPOr agonist: stimulates megakaryocyte proliferation and differentiation
- Small molecule; MW = 442
- Does not prime platelets for activation and aggregation¹
- Less immunogenic potential than peptidyl agents
- Clinical studies in ITP, liver disease and CIT

Thrombopoietin (TPO) MW 64,000

Eltrombopag (TPOr-agonist) MW 442

Reference	Study	Number patients	Efficacy	Rate Respo. N(%)
NEJM	Open label	12	Plt > 50	7(58)
AMG531	Placebo-contr	4 (P)		1(25)
		17 (D)		13(76)
BJH	Open label	15	Plt > 50	9(60)
AMG531				
NEJM	Placebo-contr	27 (P)	Plt > 50	3(11)
Eltrombopag		27(D 50mg)		19(70)
		26 (D75mg)		21(81)
Lancet	Placebo-contr	21sp(P)	Plt > 50	0(0)
AMG531		41sp(D)		16(38)
		21 ns(P)		1(2)
		41ns(D)		25(56)
Total		73(P)		5(7)
		180(D)		110(61)

Reference	Study	Number patients	Serious SE
NEJM	Open label	24(D)	3
AMG531	Placebo-contr	4 (P)	2
		17 (D)	1
BJH	Open label	16	1
AIVIG531			
NEJM	Placebo-contr	29 (P)	4
Eltrombopag		30(D 30mg)	2
		30 (D75mg)	4
		28(D75mg)	3
Lancet	Placebo-contr	41(P)	5 (2†)
AMG531		83(D)	6 (1†)
Total		74(P)	11(14.8%)
		212(D)	20(9.4%)

Potential risks of thrombopoietic agents

Adverse event

Clinical evidence

- Rebound thrombocytopenia
- Thrombosis
- Increased marrow reticulin

Severe thrombocytopenia (platelet counts < baseline level), when thrombopoietic agents are stopped.

No evidence for an increased risk from current clinical trials; risk could be revealed with long-term use.

In a clinical trial of rhTPO in patients with AML, 8 of 9 patients had reversible increased marrow reticulin. Increased, reversible marrow reticulin has been reported in ITP patients in romiplostim clinical trials.

 Acceleration of hematologic malignancies In a phase 1/2 clinical trial of romiplostim, 6 of 44 patients with MDS had increased myeloblasts and 1 patient progressed to LAM

Dose Evaluation Study Of Oral Eltrombopag In Patients With Sarcoma Receiving The Adriamycin And Ifosfamide Regimen

This study is currently recruiting participants. Verified by GlaxoSmithKline, October 2008

Sponsored by: GlaxoSmithKline Information provided by: GlaxoSmithKline ClinicalTrials.gov Identifier: NCT00358540

1.Recruiting Study of AMG 531 to Evaluate the Safety & Efficacy in Patients With Non-Hodgkin's Lymphoma Condition:LymphomaInterventions:Drug: AMG 531; Drug: Rituximab; Drug: Cyclophosphamide; Drug: Vincristine; Drug: Doxorubicin; Drug: Dexamethasone; Drug: Methotrexate; Drug: Cytarabine; Drug: Placebo 2.Recruiting AMG 531 in Patients With Advanced Malignancy Receiving Treatment With Carboplatin Condition:Solid Tumors Interventions:Drug: AMG 531; Drug: Carboplatin; Drug: Adriamycin; Drug: Ifosfamide 3.Recruiting <u>Dose/ Schedule Finding Trial of AMG 531 for Chemotherapy-Induced Thrombocytopenia (CIT) in</u> Non-Small Cell Lung Cancer (NSCLC) Conditions:Lung Cancer; Chemotherapy-Induced Thrombocytopenia; Non-Small Cell Lung Cancer; Cancer; Lung Neoplasms; Oncology; Solid Tumors; Thrombocytopenia Interventions:Biological: AMG 531; Drug: Placebo 4.Recruiting A Safety and Efficacy Study to Evaluate AMG 531 Treatment in Subject With Myelodysplastic Syndrome Receiving Revlimid Conditions: Myelodysplastic Syndromes; Thrombocytopenia Interventions: Biological: AMG 531; Drug: Placebo 5.Recruiting <u>Determination of Safe and Effective Dose of AMG 531 in Subjects With MDS Receiving</u> Hypomethylating Agents Conditions:MDS; Myelodysplastic Syndromes; Thrombocytopenia Interventions:Drug: Placebo; Biological: AMG 531 6.Completed A Dose and Schedule Finding Trial With AMG 531 for CIT in Adults With Lymphoma Conditions:Chemotherapy-Induced Thrombocytopenia; Hodgkin's Lymphoma; Non-Hodgkin's Lymphoma; Cancer; Oncology; Thrombocytopenia Intervention:Biological: AMG 531 7.Recruiting Evaluating the Safety of Long Term Dosing of Romiplostim (Formerly AMG 531) in Thrombocytopenic Subjects With Myelodysplastic Syndromes (MDS) Conditions:Hematology; MDS; Myelodysplastic Syndromes; Thrombocytopenia Intervention:Drug: Romiplostim (formerly AMG 531) 8.Completed Determination of Safe Dose of Romiplostim (Formerly AMG 531) in Subjects WithMDS Conditions:MDS; Myelodysplastic Syndromes; Refractory Cytopenias; ThrombocytopeniaInterventions:Drug: Rom iplostim; Drug: Romiplostim; Drug: Romip 9.Recruiting Romiplostim Treatment of Thrombocytopenia in Subjects With Low or Intermediate-1 Risk Myelodysplastic Syndrome (MDS) Conditions:MDS; Myelodysplastic Syndromes; Thrombocytopenia Interventions:Biological: Romiplostim; Drug: Placebo

Evaluating safety and efficacy of AMG 531 for the treatment of thrombocytopenic patients with myelodysplastic syndrome (MDS): Preliminary results of a phase 1/2 study.

- 28 MDS patients, PLT baseline count < 5 x 10⁹/L, treated weekly with romiplostim
- 17 (61%) achieved a platelet response (median platelet count 25 x 10⁹/L; median peak platelet count 130 x 10⁹/L)
- 11/18 treated for at least 12 ws. achieved a durable response (at least 8 consecutive ws.)
- No treatment-related severe AEs occurred

Management of bleeding with "hemostatic" drugs¹

In cancer thrombocytopenic patients:

- DDAVP^{2,3}
- Conjugate estrogen³
- rFVIIa⁴⁻⁹
- Vitamin k³
- Tranexamic acid³

¹Mannucci PM and Levi M. *NEJM*, 2007; ²Castaman G et al. *Haematologica*, 1997; ³Chiu J et al. *Curr Opin Hematol*, 2002; ⁴Robert H et al. *Blood*, 2004; ⁵Goodnought LT. *Semin Hematol*, 2004; ⁶Vidarsson B et al. *Thromb Haemostas*, 2000; ⁷de Fabritiis P et al. *Haematologica*, 2004; ⁸Pihusch M et al. *J Thromb Haemostas*, 2005; ⁹Marietta M et al. *J Thromb Haemostas*, 2006

•Current guidelines of American Heart Association recommend ASA therapy in all cases of Acute Coronary Sndromes¹

- •Guidelines developed for patients with normal platelet count
- •Patients with cancer exclude from RCT of anti-thrombotic therapy

but

- •15% cancer patients develop thrombosis²
- •10% cancer patients have thrombocytopenia

Impact of ASA therapy in cancer patients with thrombocytopenia and Acute Coronary Syndrome (ACS)³

¹Braunwald E et al. *J Am Coll Cardiol*, 2002; ²Lip Gy et al. *Lancet Oncol*, 2002; ³Sarkiss MG et al. *Cancer*, 2007

Retrospective analysis at M.D. Anderson CC (year 2001)

	Total	>100 k/µL	≤100 k/µL	
	N = 70	N = 43	N = 27	
Characteristics	No. (%)	No. (%)	No. (%)	*Р
Women	23 (33)	15 (35)	8 (30)	
Men	47 (67)	28 (65)	19 (70)	
Age, mean ± SD	67 (10)	68 (10)	64 (9)	
Hypertension	39 (57)	25 (61)	14 (52)	
Diabetes mellitus	18 (26)	11 (27)	7 (26)	
Hyperlipidemia	38 (54)	23 (53)	15 (56)	
Smoking	46 (66)	28 (65)	18 (67)	
Family history	22 (31)	15 (35)	7 (26)	
Coronary artery disease	20 (29)	13 (32)	7 (26)	
Cancer diagnosis				
Solid	54 (77)	40 (93)	14 (52)	.000
Hematologic	16 (23)	3 (7)	13 (48)	

Clinical Parameters of Cancer	Patients Presenting With Acute
Myocardial Infarction	

	Total	>100 k/µL	\leq 100 k/µL	
	N = 70	N = 43	N = 27	
Characteristics	No. (%)	No. (%)	No. (%)	Р
Heart rate, beats/min				
on admission		92 (60, 180)	112 (68, 150)	.02*
Systolic blood				
pressure, mmHg		118 (70, 187)	115 (60, 160)	
Hemoglobin, gm/dL	10 (6, 16)	11 (6, 16)	9 (6, 13)	.0002†
Platelet count, cells k/µL	169 (4, 498)	225 (121, 498)	32 (4, 100)	<.0001
ST segment elevation	17 (24)	9 (21)	8 (30)	
Troponin I, ng/mL	4 (0, 77)	3 (0, 48)	5 (2, 77)	
CK-MB, ng/mL	12 (1, 253)	10 (1, 253)	18 (2, 110)	
% Left ventricular				
ejection fraction	50 (20, 70)	48 (20, 70)	55 (23, 68)	

Retrospective analysis at MD Anderson CC (year 2001)

Retrospective analysis at MD Anderson CC (year 2001)

No major gastrointestinal bleeding, intracranial hemorrhage of fatal bleed occurred