
Sindromi Mielodisplastiche: il percorso diagnostico

Luca Malcovati Dipartimento di Ematologia & Oncologia, Fondazione IRCCS Policlinico S. Matteo, Università degli Studi di Pavia. <u>luca.malcovati@unipv.it</u>

Myeloid Disorders

Myelodysplastic syndromes: *Clinical features at diagnosis*

Pavia MDS Cohort

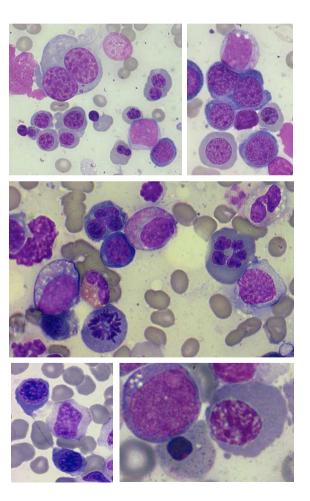
- Anemia (90%);
 - MCV 80-100 fL (55%),
 - MCV >100 fL (40%);
- Neutropenia (50%);
- Thrombocytopenia (40%).
- Splenomegaly: 12%

Proposal for standardized diagnostic and prognostic procedures in the myelodysplastic syndromes

Blood tests

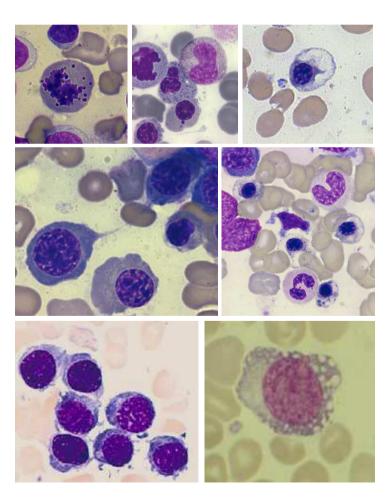
- WBC, full differential count, Hb, Plt, red blood cell indices (MCV), reticulocyte count, peripheral blood smear;
- ALAT, ASAT, ALP, Albumin, S-protein electrophoresis;
- S-folic acid, cobalamin;
- iron, TIBC, ferritin;
- LDH, bilirubin, haptoglobin, Coombs test;
- Uric acid, Creatinine, S-erythropoietin;
- Thyroid function tests;
- Anti-HIV, anti-HCV, anti-Parvovirus B19 (hypoplastic MDS), CMV-test.

Proposal for standardized diagnostic and prognostic procedures in the myelodysplastic syndromes

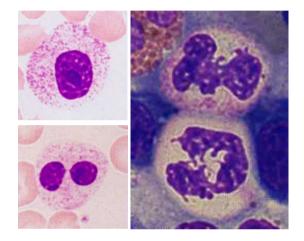

Bone marrow analysis

- Bone marrow aspirate + biopsy;
- Bone marrow slides staining should include May-Grünwald-Giemsa / equivalent and iron staining;
- At least 400 marrow cells (100 erythroblasts), 20 megakaryocytes should be evaluated;
- For significant dysplasia, dysplastic features should be present in at least 10% of the nucleated cells in the lineage in consideration.
- A cytogenetic analysis of bone marrow aspirate should be done in all cases, at least 25 metaphases, whenever possible.

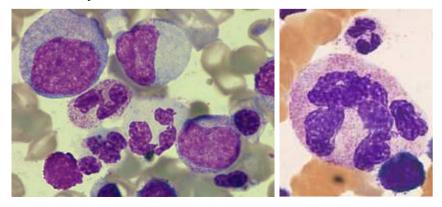
Bone marrow dyserythropoietic changes in MDS


Nuclear abnormalities

- Megaloblastosis
- Pycnosis
- •Irregular nuclear edges
- Multinuclearity
- Nuclear bridging

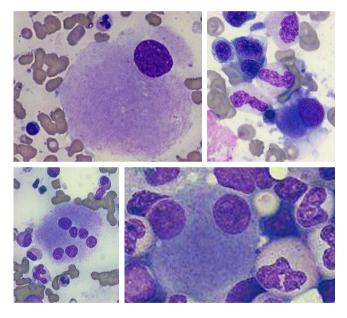

Cytoplasmic abnormalities

- Inclusions
- •Cytoplasmic bridging
- Incomplete hemoglobinization
- Fringed cytoplasm
- Vacuolization

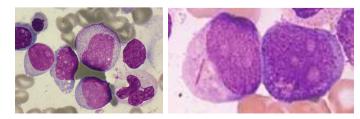


Bone marrow dysmyelopoietic changes in MDS

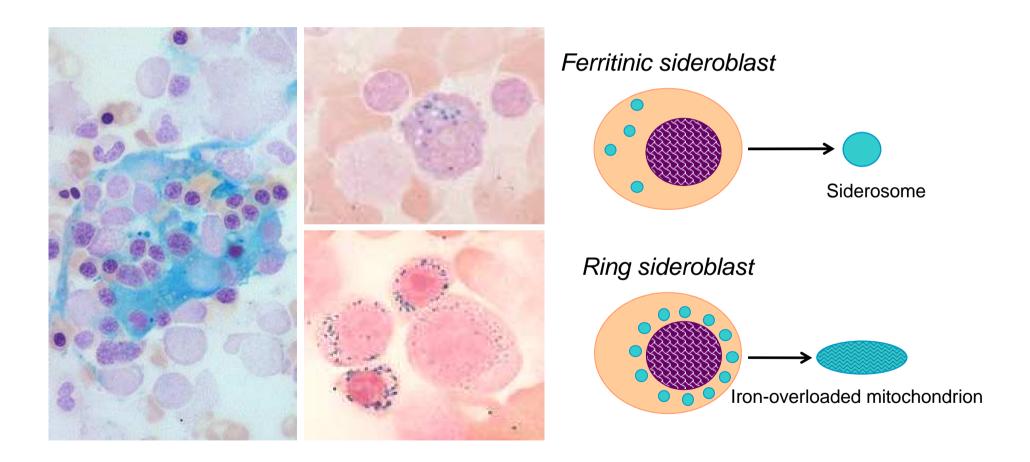
Myeloid nuclear abnormalitiesBizzare nuclear shapePelgeroid nuclei

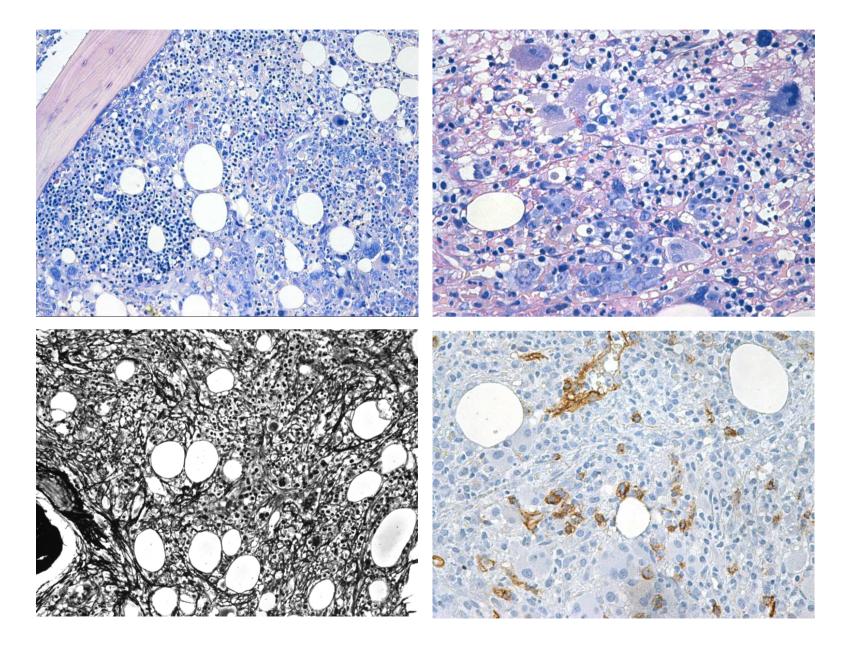


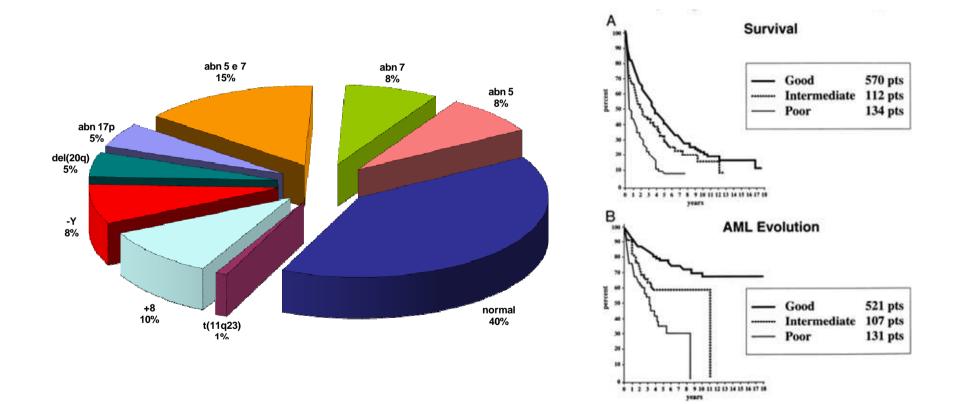
Myeloid cytoplasmic abnormalities •Hypo- degranulation •Anysocitosis



Megakaryocitic abnormalities


- •Large monolobar forms
- •Small binucleated elements
- •Dispersed nuclei
- Micromegakaryocytes
- Degranulation


BM blasts and Auer rods


Bone marrow iron staining: *Prussian Blue reaction*

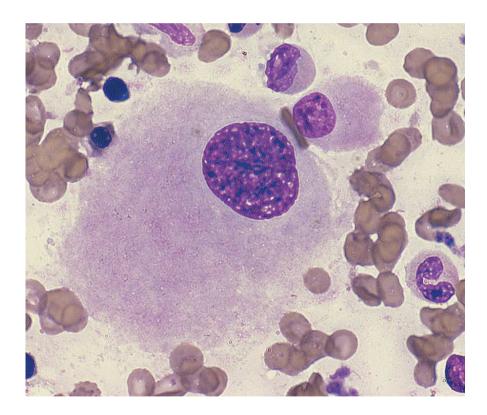
Bone marrow trephine biopsy in MDS

Cytogenetic abnormalities in primary MDS: Incidence and prognostic value

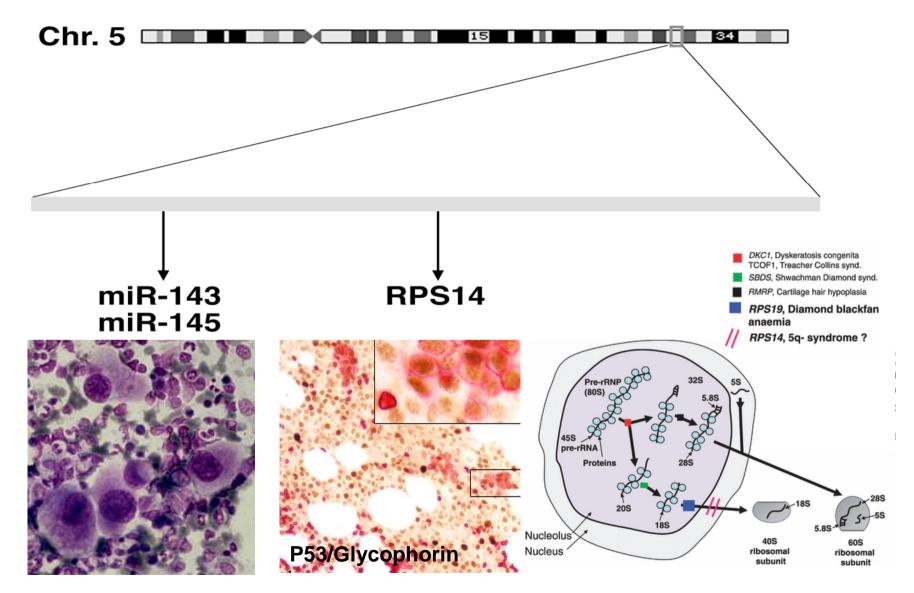
IPSS

WHO classification of Myelodysplastic Syndromes

Disease	Blood findings	Bone marrow findings
Refractory cytopenia with unilineage dysplasia (RCUD): (refractory anemia [RA]; refractory neutropenia [RN]; refractory thrombocytopenia [RT])	Unicytopenia or bicytopenia [*] No or rare blasts (<1%)	Unilineage dysplasia: 10% of the cells in one myeloid lineage, <5% blasts, <15% of erythroid precursors are ring sideroblasts
Refractory anemia with ringed sideroblasts (RARS)	Anemia, no blasts.	Erythroid dysplasia only, < 5% blasts, ≥15% ringed sideroblasts.
Refractory cytopenia with multilineage dysplasia (RCMD)	Cytopenia(s), no or rare blasts (<1%), no Auer roads, <1x10 ⁹ /L monocytes.	Dysplasia in 10% of the cells in 2 myeloid lineages (neutrophil and/or erythroid precursors and/or megakaryocytes), <5% blasts in marrow No Auer rods, ±15% ring sideroblasts
Refractory anemia with excess blasts-1 (RAEB-1)	Cytopenia(s), <5% blasts, no Auer roads, <1x 10 ⁹ /L monocytes.	Unilineage or multilineage dysplasia, 5-9% blasts, no Auer roads.
Refractory anemia with excess blasts-2 (RAEB-2)	Cytopenia(s), 5-19% blasts, Auer roads ±, <1x10 ⁹ /L monocytes.	Unilineage or multilineage dysplasia, 10-19% blasts, Auer roads ±.
Myelodysplastic syndrome, unclassified (MDS-U)	Cytopenias, <1% blasts, no Auer roads.	Unequivocal dysplasia in <10% of cells in one or more myeloid lineages when accompanied by a cytogenetic abnormality considered as presumptive evidence for a diagnosis of MDS, <5% blasts
MDS associated with isolated del(5q)	Anemia, normal or increased platelet count, no or rare blasts (<1%)	Normal to increased megakaryocytes with hypolobated nuclei, <5% blasts, no Auer roads, isolated del(5q)


WHO classification of Acute Myeloid Leukemia

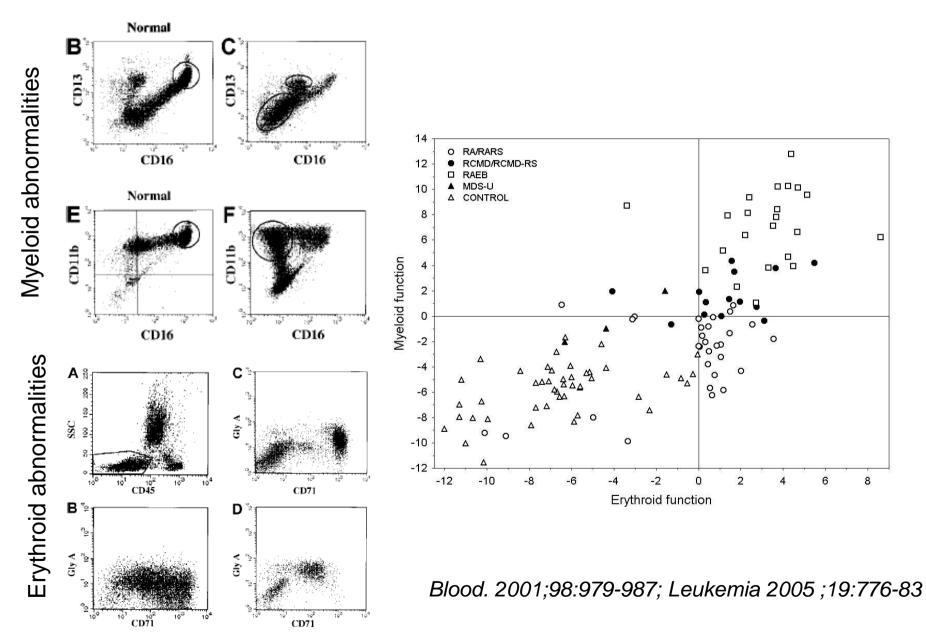
- Acute myeloid leukemia with recurrent genetic abnormalities
 - AML with t(8;21)(q22;q22); *RUNX1-RUNX1T1*
 - AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11
 - APL with t(15;17)(q22;q12); PML-RARA
 - AML with t(9;11)(p22;q23); *MLLT3-MLL*
 - AML with t(6;9)(p23;q34); *DEK-NUP214*
 - AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1
 - AML (megakaryoblastic) with t(1;22)(p13;q13); RBM15-MKL1
- Acute myeloid leukemia with myelodysplasia-related changes
- Therapy-related myeloid neoplasms
- Acute myeloid leukemia, not otherwise specified


Distinct haematological disorder with deletion of long arm of No. 5 chromosome

van Den Berghe, *Nature*, **251**, 437-438 (1974)

- Female preponderance
- 5q- sole karyotypic abnormality
- Macrocytic anemia (MCV>100 fL)
- High platelet count
- Increased megakaryocytes with monolobulated nuclei
- Prolonged survival

Insights into the molecular basis of the 5q- syndrome



Nature 2008;451:335-9; Br J Haematol 2008;144:157-68; Blood 2010;115:2721-2723

The WHO classification of the myeloid neoplasms: Myelodysplastic syndromes (MDS)

«Until more reliable markers of erythroid dysplasia are widely available, the category of RA will likely continue to include some cases that are nonclonal erythroid disorders. In addition, occasional patients may present with cytopenias affecting more than one cell lineage and have multilineage dysplasia but not at the 10% level required for a diagnosis of RCMD. If blasts are fewer than 5% in the bone marrow, such cases are difficult to classify or even to recognize as MDS with confidence. In cases like these a presumptive diagnosis of RCMD might be appropriate. However, in such cases as well as for cases suspected to be RA, if there is no evidence of clonality by genetic studies, the WHO recommends observation for 6 months prior to making a diagnosis of MDS».

Flow Cytometry Immunophenotyping in MDS

Flow cytometry in MDS: open questions

- No single immunophenotypic parameter proved able to discriminate accurately between MDS and other conditions.
- Recognition of abnormal patterns requires an expert operator. Quantitative immunophenotypic analysis (MFI) would be more objective.
- Inter-laboratory repeatability and reproducibility are a critical issue towards the standardization of a flow cytometry approach.

FISH in MDS with a normal chromosome pattern on conventional cytogenetics

1.00 *Methods* **Overall** survival 0.75 Probes: 5q31, 7q31, FISH normal 11q13.3, 12p13, 0.50 13q14, 17p13.1, 0.25 FISH abnormal 20q12. 0.00 132 0 12 24 36 48 60 72 84 96 108 120 144 Results follow-up (months) Clonal abnormalities in 1.00 **Disease progression** 12% of the RA and 0.75 21% of the RAEB FISH normal patients (0% IPSS low, 0.50 12% int-1, 41% int-2 0.25 risk). **FISH** abnormal 0.00

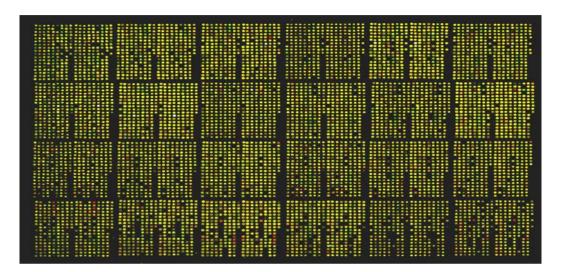
0

12 24

36

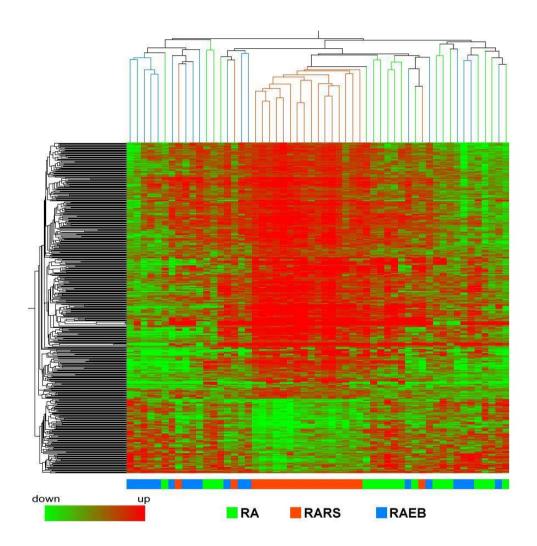
120

108


follow-up (months)

132

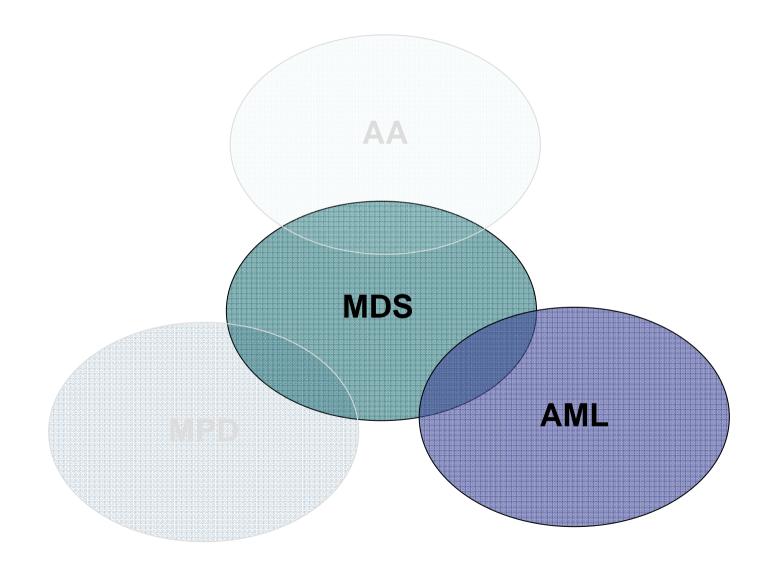
144


Leukemia, 2003;17:2107-12

CGH Microarray

		55 05 5	95 05 	7 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	85.05
9 - 5 0.5 9 - 1		13	05 05 00 00 00 00 00 00 00 00 00 00 00 00 0	€45 05 15	
	8 ^{05 05}	21	°.s o.s	× + + + + + + + + + + + + + + + + + + +	Ţ ^{** •*}

Gene expression profiling of CD34+ cells in myelodysplastic syndromes


Blood 2006;108:337-45.

Genes implicated in the pathogenesis of MDS

Gene	% mutations	(Putative) Gene Function	Chromosomal location
TET2	25%	Epigenetic DNA modification	4q24
RPS14	15%	Ribosomal protein, Protein Translation	5q32
CTNNA1	15%	E-cadherin anchoring to to the cytoskeletal actin	5q31
Mir145/146a	15%	Expression of targets (TIRAP, TRAF6)	5q33
ASXL1	10%	Gene transcription	20q11.21
N-RAS	10%	Signal transduction	1p13.2
P53	5-10%	Apoptosis, DNA repair, cell cycle regulation	17p13.1
RUNX1/AML1	5-10%	Transcription factor	21q22.3
NPM1	5%	Nuclear export ribosome, p53 function, transcription	5q35
JAK2	5%	Tyrosine kinase, signal transduction	9p24
FLT3	2-5%	Growth factor receptor	13q12
C/EBPalpha	1-4%	Transcription factor, myelopoiesis	19q13.1
EVI-1	2%	Transcription factor	3q26
CBL	1-2%	E3 ubiquitin ligase, signal transduction	11q23.3

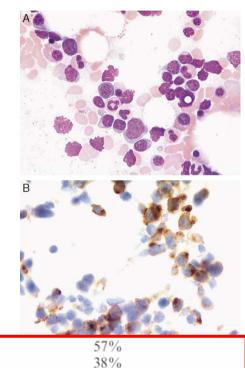
EHA Educ Progr 2010

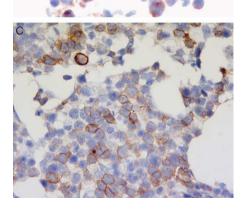
Myeloid Disorders

Acute Myeloid Leukemia/Myelodysplastic Syndromes

- MDS with more than 20-30% BM blasts (RAEBt according to FAB classification) assimilated to AML
- AML with multilineage dysplasia (de novo, following MDS, following MDS/MPD)
- AML and MDS, therapy-related

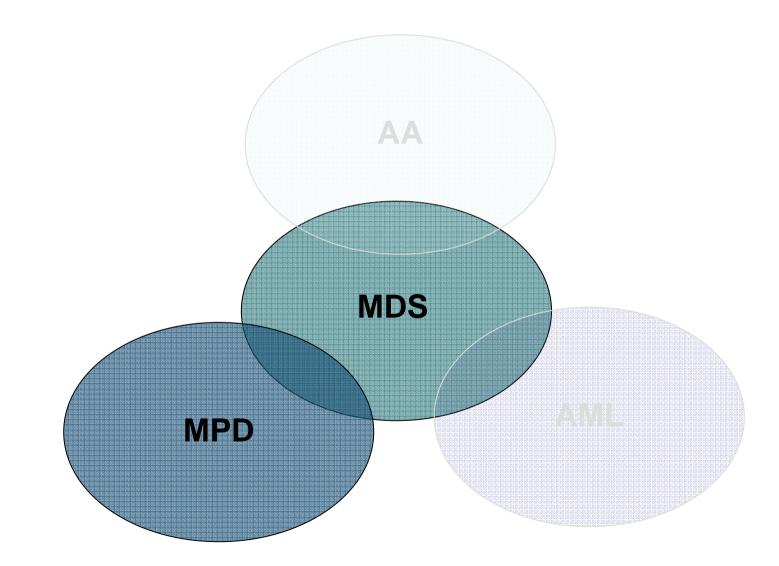
Comparison of myeloblast count by BMA and IHC


% of cases with discrepant BCs: initial vs. retrospective review	31%
% with higher BC on retrospective review*	80%
% of cases with discordant BCs: BMA vs. BMTP differential	28%
% with higher BC by BMTP differential	77%
% of cases with discordant BCs: BMA or BMTP differential vs. IHCS with CD34	
% with significantly lower BC by IHCS ⁺	
% with significantly higher BC by IHCS, resulting in different final diagnosis‡	
% with significantly lower BC by IHCS§	44%
% with significantly higher BC by IHCS, resulting in different final diagnosis	19%
% of Discordant BCs: IHCS with CD34 in BM clot vs. BM core biopsy sections	19%
% with stronger intensity/higher percentage of cells staining in the BMCB sections	83%
% of Discordant BCs: IHCS with CD117 in BM clot vs. BM core biopsy sections	40%
% with stronger intensity/higher percentage of cells staining in the BMCB sections	33%


*10 different final diagnoses: 1, changing from refractory anemia with excess blasts (RAEB)-1 to RAEB-2; 1, from CMML-1 to CMML-2; 4, from RAEB-2 to AML; 3, from RAEB-1 to AML; and 1, from CMML-1 with eosinophilia to AML.

[†]Primarily due to CD34-negativity/variable reactivity of the blasts by flow cytometry.

^{‡5} different final diagnoses: all RAEB-2s by initial review changed to AMLs by IHCS with CD34 and CD117. §Largely unexplained.

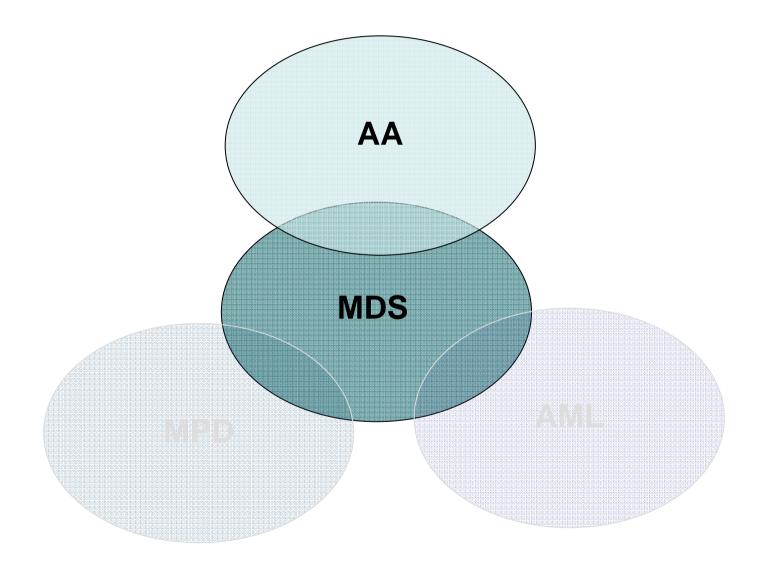

Appl Immunohistochem Mol Morphol. 2007;15:154-9

19%

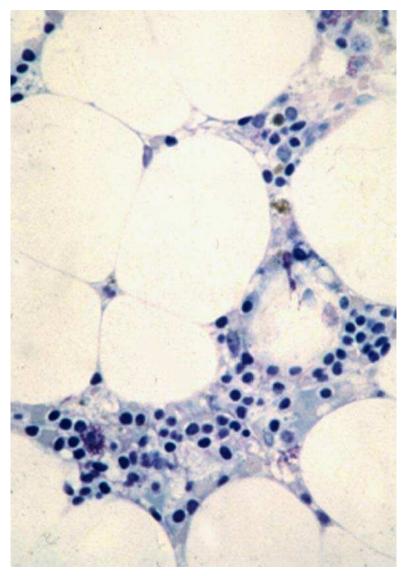
Myeloid Disorders

Myelodysplastic/Myeloproliferative Disorders

•Chronic myelomonocytic leukemia


•Atypical chronic myeloid leukemia

•Juvenile myelomonocytic leukemia


•Myelodysplastic/myeloproliferative disease, unclassifiable

Blood 2002, 100: 2292-2302

Myeloid Disorders

Hypoplastic MDS

- 10-20% of MDS patients have hypocellular marrow.
- Cytogenetic abnormalities are more objective evidence of MDS, but are also found in a subset of otherwise typical AA.
- The differential diagnosis between MDS and AA often relies on "soft" histologic criteria.
- Both AA and MDS are associated with expansion of PNH clones.

